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Abstract 

In this paper we consider the title equation when pqxi   where qp,  are distinct primes, 

and also when some values of ix  are of the form .2qp  Four solutions, old and new are 

exhibited. We also introduce the concept of the “basic set of primes” which enables us to achieve 

the sum of 1 without the use of a computer. In particular, this concept is applied in the analysis 

of the Johnson’s solution–unpublished, in which the reciprocals and their sum of 1 are obtained 

only by the use of a computer. 

1. Introduction 

This article is concerned with the Diophantine equation 





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jik
i

xxxxx
x

1

21 |,,1
1

  for ji   (1) 

which was considered by the late Paul Erdös, R. L. Graham, E. G. Barbeau, 

A. Wm. Johnson, the author and others. 

It is easily verified that no integer tx  in (1) can be a power of a prime. 

Hence, all values ix  in (1) must be products of at least two prime factors. 

If the integers ix  in (1) are of the form pqxi   where qp,  are distinct 

primes, then these integers yield the direct consequence that 

ji xx |   for  .ji   
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Thus, we may view such a case as a particular case of the general equation 

(1). 

The existence of a solution of (1) was independently raised by the author 

[2, 3] and R. L. Graham [8, 3]. The author [3] provided a solution of (1), for 

which he received a reward of $10 offered by Erdös [2, 3]. In [3] ,79k  but 

not all ix  are of the form qpxi   where qp,  are distinct primes. The 

author [4] provided another example of the same nature as that in [3] with 

.68k  Barbeau applied a stronger condition, i.e. all ix  are products of 

exactly two distinct primes, and exhibited in [1] an example of (1) with 

101k  and .1838171101 x  The author [5] improved Barbeau’s solution 

with 63k  and 790963 x  where all .pqxi   The results of Barbeau [1] 

and of the author [3] are cited in [9]. In [6, 7], a solution in which 52k  and 

pqxi   is demonstrated. All the solutions of the author which are 

mentioned here are obtained without a computer. The results [3, 5, 6] are also 

cited in [10]. Johnson [12] exhibited an example with 48k  and .pqxi   

This result is unpublished and seems to be a solely computerized result. It is 

cited in [10, 11]. 

In Section 2 Johnson’s example [12] is exhibited when 48k  and 

.pqxi   The author’s Example 1 analyzes this result, and provides a 

structure of the numbers which yields the sum of 1. In Section 3, the author’s 

result in [7] demonstrates in Example 2 another structure of the numbers 

when 52k  and .pqxi   Examples 1 and 2, represent two different 

structures in order to achieve the sum of 1 without a computer. Finally, in 

Section 4, when the restriction on the values pqxi   is slightly relaxed, new 

Examples 3 and 4 both with 51k  are exhibited. 

In each of the forthcoming Examples 1-4, the sum of 1 is attained without 

the aid of a computer. 

2. The Case 48k  (Johnson’s Example) 

It is cited in [11] that at least thirty-eight integers are required to obtain 

the sum of 1 when ji xx |  for .ji   A. Wm. Johnson [12] manages it with 
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forty-eight integers ix  where pqxi   and qp,  are distinct primes. The 

forty-eight integers in ascending order cited in [10, 11] appear as follows: 

6 21 34 46 58 77 87 115 155 215 287 391 

10 22 35 51 62 82 91 119 187 221 299 689 

14 26 38 55 65 85 93 123 203 247 319 731 

15 33 39 57 69 86 95 133 209 265 323 901 

Guy asks whether this is the smallest possible set, and further mentions that 

Richard Stong also solved this problem, but used a larger set. No reference as 

such is provided. It seems that the above result was obtained by a computer. 

We shall now analyze Johnson’s result by introducing the concept of the 

“basic set of primes” which will shed a new light on the structure of the above 

numbers, and will enable us in particular to obtain the sum of 1 without the 

use of a computer. 

Denote by S the “basic set of primes” which consists of the first eight 

smallest primes, i.e. 

 ,19,17,13,11,7,5,3,2S  

and the product of the eight elements in S is 

.9699690191713117532 L  

The above four rows of the forty-eight numbers may now be arranged in 

the following structure as shown in Example 1. 

Example 1. 
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   4 uf 
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(5) 
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
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1
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1
      

L
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(11) 

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1
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L
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(12) 

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L
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(13) 






 
17

1

13

1

5

1

53

1
      

L

61446
   3 uf 

         
L

9699690
1         48 uf 

where each of the above brackets contains members of S only. Furthermore, 

in rows (8)-(13), the denominator of the reciprocal outside the brackets is a 

prime which divides the numerator obtained by summing up the reciprocals 

inside the brackets. 

Except for the product 1113, the twenty-seven reciprocals of the form 

pq

1
 which are obtained from rows (1)-(7) inclusive, consist of all the products 

of two different factors of L. 

A hand calculator easily enables us now to obtain the thirteen partial 

sums appearing on the right-hand side of each row, and that all these sums 

add up to 1. 

It is noted that the arrangement of the thirteen rows as in Example 1 is 

not the only such possibility. In Section 3 when ,52k  a different format of 
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arrangement is employed, which yields the sum of 1 even in a simpler and 

easier way. 

3. The Case 52k  

In this section, we present the author’s result in [7] which contains fifty-

two reciprocals satisfying (1), and each denominator is of the form pq. 

As in Section 2, let T denote the “basic set of primes” which consists of the 

first six smallest primes, namely 

 .13,11,7,5,3,2T  

The fifty-two numbers are arranged in fourteen rows as shown in 

Example 2, which is also unique. 

Example 2. 

(1')  6 10 14 15 21 35 

(2') 13p  26 39 65 91   

(3') 19p  38 57 95 133   

(4') 31p  62 93 155    

(5') 41p  82 123 287    

(6') 71p  213 355 497    

(7') 11p  22 33 55 77   

(8') 17p  34 51 119 187   

(9') 29p  58 87 203 319   

(10') 53p  106 159 265 583   

(11') 61p  122 183 671    

(12') 23p  46 69 161 299   

(13') 101p  202 505 1313    

(14') 151p  453 1057 1963    
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The least common multiple, in short R of the first row is 

.2107532 R  The numbers in row (1') are all the products of two 

different factors of R. The structure of each of the remaining thirteen rows is 

as follows. The members of each row are of the form Mp  where 11p  is a 

prime and all thirteen primes are distinct. Observe that except for rows (1') 

and (7'), in all other twelve rows the prime p indicated in front of the 

corresponding ix  divides the numerator of the sum of the reciprocals of that 

row. 

The values M consist of one prime factor of: R in rows (2')-(6'), 11R in 

rows (7')-(11'), 13R in rows (12')-(14'). Furthermore, the sum of the 

reciprocals of the 52 numbers above is as follows:     ,147- RS 6''1  

    ,5111561- RRS 11'7'      .1213156- RRS 14'12'  The three partial 

sums yield     ,1210-  RS 14'1'  and the desired result is obtained without 

the use of a computer in a simpler way. 

4. The Case 51k  

In this section, we slightly relax the restriction that pqxi   for all 

values of i. We demonstrate two such examples, namely Examples 3 and 4 

with .51k  Each of the examples contains two unit fractions of the form 

,
1
2qp

 and forty-nine unit fractions of the form .
1

pq
 This is done by using 

Example 1. 

Consider Example 1 with its thirteen rows and .48k  Delete the triplet 

in row (12), i.e. 

(12) .
171171

1752

3

17

1

5

1

2

1

43

1

L











   

Example 1 now contains forty-five unit fractions whose sum is less than 1. 

Add to these forty-five unit fractions the following two triplets: 
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(a) ,
5.101887

1774

5
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1

7

1

4

1
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1

L



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




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(b) ,
5.69283

754

1

7

1

5

1

4

1

83

1

L











   

which satisfy 

     .
1711715.692835.101887

12ba 
LLL

 

Example 3 is now established and consists of fourteen rows as follows. 

Example 3 : rows (1)-(11), row (a), row (13), row (b), where  





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5121 |,,1
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x

  for .ji   

To obtain Example 4, we proceed in the same manner as above. 

In Example 1 delete the triplet in row (11), namely: 

(11) .
230945
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L
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


   

To the remaining forty-five unit fractions add the following two triplets: 

(c) ,
5.161661
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(d) ,
5.69283
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1

7

1

5

1

4

1
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1

L








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

   

which satisfy 

     .
2309455.692835.161661

11dc 
LLL

 

Example 4 is therefore comprised of fourteen rows as follows. 

Example 4: rows (1)-(10), row (12), row (c), row (13), row (d), where 






51

1

5121 |,,1
1

i

ji
i

xxxxx
x

  for .ji   

A direct consequence of Examples 1-4 is: when the number of primes in 

the “basic set of primes” increases, the value of k decreases. It seems 

therefore that the following conjecture may be raised. 
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Conjecture. Let N be a “basic set of primes” containing the first t 

smallest primes. If ,8t  then (1) has a solution when .48k  

It is noted: an example when 48k  would imply that the Johnson’s 

Example in Section 2 is not unique, and an example when 48k  will 

provide the answer to Guy’s question in [11] (see Section 2). 
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